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Abstract

MicroRNAs (miRNAs) are endogenous mediators of RNA interference and have key

roles in the modulation of gene expression under healthy, inflamed, stimulated,

carcinogenic, or other cells, and tissues of a pathological state. Many studies have

proved the association between miRNAs and cancer. The role of miR‐326 as a tumor

suppressor miRNA in much human cancer confirmed. We will explain the history and

the role of miRNAs changes, especially miR‐326 in cancers and other pathological

conditions. Attuned with these facts, this review highlights recent preclinical and

clinical research performed on miRNAs as novel promising diagnostic biomarkers of

patients at early stages, prediction of prognosis, and monitoring of the patients in

response to treatment. All related publications retrieved from the PubMed database,

with keywords such as epigenetic, miRNA, microRNA, miR‐326, cancer, diagnostic
biomarker, and therapeutic target similar terms from 1899 to 2018 with limitations in

the English language. Recently, researchers have focused on the impacts of miRNAs

and their association in inflammatory, autoinflammatory, and cancerous conditions.

Recent studies have suggested a major pathogenic role in cancers and autoin-

flammatory diseases. Investigations have explained the role of miRNAs in cancers,

autoimmunity, and autoinflammatory diseases, and so on. The miRNA‐326 expression

has an important role in cancer conditions and other diseases.
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1 | INTRODUCTION

Cancer is categorized as the third leading cause of death worldwide

next to cardiovascular and infectious diseases (Paranjape, Slack, &

Weidhaas, 2009). In recent years, many studies have been focused on

the diagnosis, treatment, and prognosis of cancer in the aspect of

genetic and epigenetic factors. Epigenetic modulations are mostly

based on DNA methylation, histone posttranslational modifications,

and noncoding RNAs, especially the miRNAs. MiRNAs are a member

of a broad family of noncoding RNA and can be as potential tumor

suppressors or oncogenes. MiRNA genes are widespread in all of the

genomes, excluding for chromosome Y, and are considered as a

molecular tool for noninvasive diagnosis and prognosis of cancers

(Filipow & Laczmanski, 2019). Summarily, modulation of gene

expression by miRNAs occurs through the specific pairing of the

miRNA sequence to its corresponding target messenger RNA

(mRNA). This pairing can drive to either translational suppression

or rupture of the mRNA, following in the decreased levels of the

target protein. While hallmarks of cancer were reported and miRNAs

were involved as major players in the management of all cancer

hallmarks, there has been rising concern in targeting miRNAs as

treatment of cancer, since 2011 (Cortez et al., 2019).

The wrong expression of miRNAs is often found in cancer, resulting

in dysregulation of genes expression that regulates the biology of

cancerous cells. miRNAs are classified as oncogenic miRNAs (oncomiR)

which cause cancer by targeting antiproliferative, cell differentiation

and proapoptotic genes, and tumor suppressive miRNAs that decrease

in expression during cancer and modify the expression of the

prosurvival, cell cycle, and proproliferative genes. Surprisingly individual

miRNA can play a dual role as oncogenic or tumor suppressor in certain

tumors, depending on cellular conditions. (Monteleone & Lutz, 2017).

Both types of miRNAs associated with various biological processes such

as metastasis and invasion in cancer, thereby implying that miRNAs

might serve as new biomarkers for the diagnosis and molecule‐targetted
therapy of cancers (J. Y. Wang & Chen, 2019).

Many miRNAs have been reported as diagnostic biomarkers due to

their dysregulation in cancers compared with normal tissue. Perhaps by

the discovery of noninvasive methods, it is not necessary for biopsy and

imaging to diagnose and treatment management of cancer patients.

Accordingly, studying the function of miRNAs in regulating the immunity

of cancer is important, and it can lead to the knowing of mechanisms that

will lead to the discovery of new therapies in cancer patients.

It has been performed that miR‐326 expression dysregulation

associates in a variety of pathological process, including autoimmune

diseases and cancers. Of course, its effects in biochemical markers of

bone turnover in lung cancer bone metastasis and non‐small‐cell lung
cancer (NSCLC) metastatic have also been described (C. Sun et al.,

2016). Recent studies show that miR‐326 could potentially use as a new

biochemical marker for monitoring lung cancer bone metastatic

progression (Valencia et al., 2013) and is an effective tool for preventing

and reversing MDR in tumor cells (Liang et al., 2010). There are many

factors involved in the development of cancer, but in this review, we will

focus on the effects of miRNAs, in particular, miR‐326.

2 | MIRNAS

MicroRNAs (miRNAs) are known as small, noncoding RNAs with

almost 20–24 nucleotides in length that are associated with

posttranscriptional regulation of gene expression and cell signaling.

A single miRNA may regulate the several genes expression and also

several miRNAs may affect a single mRNA. Their role in normal

physiological processes is well‐known, thereby dysregulation of

miRNAs is assumed as key phenomena in carcinogenesis (Jadideslam

et al., 2018).

Mechanisms of malignant transformation by miRNAs includes cell

death resistance (miR‐34‐a, miR‐15/16, let‐7), tumor‐promoting

inflammation (miR‐23b, miR‐155, let‐7d), deregulation of cellular

energetic (miR‐23a/b, miR‐15b, miR‐210), genetic instability (miR‐21,
miR‐15b, miR‐155), and evading immune surveillance (miR‐124, miR‐
155, miR‐17–92). In addition, miRNAs are able to modify processes

like tissue invasion and metastasis (miR‐200 family, miR‐21,
miR‐15b), the unlimited replication potential (miR‐21, miR‐221/222,
miR‐16, let‐7 family), insensitivity to antigrowth signal (miR‐25, miR‐
95, miR‐17–92), self‐sufficiency (miR‐21, miR‐7, let‐7), and sustained

angiogenesis (miR‐125, miR‐15b, miR‐155, miR‐210; Salimi‐Asl,
Mozdarani, & Kadivar, 2016; Shah, Ferrajoli, Sood, Lopez‐Berestein,
& Calin, 2016).

MiRNAs were defined in Caenorhabditis elegans by Ambros and

Ruvkun for the first time in 1993; they introduced Lin‐4 as the first

miRNA identified in C. elegans. The second miRNA reported as let‐7 in

2000 which was ascertained to be conserved across the species that

encouraged miRNA detection studies and quickly much more

miRNAs were discovered in C. elegans, Drosophila melanogaster and

human genomes. Humans have almost 2,000 annotated miRNA

sequences and 24,521 miRNA loci annotated in 206 species (Rani,

2017).

More than half of the identified human miRNAs are located in

fragile sites and genomic regions that are involved in cancer. It

has been shown that the copy numbers of miRNAs are commonly

abnormal in human cancers according to high‐resolution array‐
based comparative genomic hybridization data. However, the

mechanisms of only a few miRNAs are studied so far. Dysregula-

tion of miRNAs may be inducible by epigenetic alterations,

genomic deletion, genomic amplification, retroviral insertion,

mutagenesis, a single nucleotide replacement resulting from a

mutation or single‐nucleotide polymorphism (SNP), and improper

activation or inhibition of the proteins that directly control

miRNA expression (Ying, 2008).

2.1 | Biogenesis of miRNAs

The sequences that encode miRNAs are normally transcribed by RNA

polymerase II and processed by RNase III enzyme Drosha to form an

approximately 70 nucleotide precursor miRNAs which are maturated

in the, and their length is reduces to about 22 nucleotides. After

maturity, miRNAs are able to identify the mRNA seed sequence and

inhibit their expression (S. Wang, Wan, & Ruan, 2016).
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2.2 | Roles of miRNAs

MiRNAs are bonded to the 3′‐untranslated region (3′‐UTR) of mRNA

to regulate the specific target proteins expression via suppressing

translation or degradation. Dysregulation of miRNAs expressions is

reported in several human cancers that is tightly connected to almost

all aspects of cancer biology, including differentiation, proliferation,

apoptosis, metastasis, invasion, and angiogenesis (Fallah et al., 2019).

This review will summarize the current understanding of miR‐326
regulation at the molecular level, focuses on its important role in

development, metastasis, and oncogenesis, discusses its use as a

diagnostic and prognostic biomarker and ultimately, defines its

potential strategy in screening and treatment of diverse types of

cancers (Y. Gao, Lin, Li, Yang, & Wei, 2017).

2.3 | MiRNAs and cancer

Many miRNAs affect the main regulatory molecules of the malignant

cells and are involved in a complex signaling network among

malignant cells and the tumor microenvironment (Rupaimoole, Calin,

Lopez‐Berestein, & Sood, 2016). The correlation between miRNAs

and cancer was first introduced by G. Calin et al. in 2002 (Nikitina,

Urazova, & Stegny, 2012). Subsequently, many studies have

conducted on the effects of miRNAs in all aspects involved in cancer

such as carcinogenesis, genomic instability, cell proliferation, apop-

tosis, replicative potential of cancer cells, regulation of angiogenesis,

immune responses, tumor development, progression, tumor invasion

and metastasis, drug resistance, prognosis, and so on (Nikitina et al.,

2012; Ruan, Fang, & Ouyang, 2009; Figure 1).

3 | MIR ‐326 ROLE IN CANCER

The sequence encoding of miR‐326 located within intron 1 of

chromosome 11. MiR‐326 has 20 nucleotides and is first recognized as

a neural‐specific miRNA in neurons. According to studies conducted so

far, miR‐326 has an important regulatory role in processes such as:

cellular growth, proliferation, metabolism of glucose and lipid; dendritic

cell function, acute rejection after heart transplantation immune cell

lineage obligation; maturation, differentiation, maintenance of immune

homeostasis; normal function, and as well as TH‐17 differentiation

(Jadideslam et al., 2018). Also, multiple investigations have confirmed that

miR‐326 is involved in embryonic development, immune response,

inflammation, oncogenesis, invasion, metabolism, cell apoptosis, tumor

growth, chemotherapy resistance, and autophagy (Jadideslam et al.,

2018; Oghbaei, Ahmadi Asl, Sheikhzadeh, Alipour, & Khamaneh, 2015;

Zununi Vahed et al., 2018).

Fascin1 (FSCN1) is the main target of miR‐326 which regulates cell

proliferation, metastasis, and low expression of miR‐326 is associated

with malignant status and poor prognosis in gastric cancer patients by

FSCN1 targeting (Jadideslam et al., 2018). MiR‐326 has a central role in

NSCLC through inhibiting cell proliferation, migration, invasion, and

promoting apoptosis by targeting oncogenic CCND1 (C. Sun et al.,

2016). MiR‐326 upregulates the expression of antifibrotic genes such as

Smad7, while downregulating of profibrotic genes such as Ets‐1 and

matrix metalloproteinase‐9 (Das et al., 2014). MiR‐326 is an important

guard of the epithelial phenotype by inhibiting transforming growth

factor β1 expression (Zou, Liu, Gong, Hu, & Zhang, 2016).

Most recently, much evidence is showing miR‐326 involvement in

development and progression of neoplasia states as a tumor

suppressor, such as colorectal cancer (G. Chen et al., 2016; Wu

et al., 2015), NSCLC (R. Wang, Chen, & Shu, 2015), lung cancer (Cai

et al., 2015), and glioma and brain cancer (Khan, Ullah, Hussein, &

Saini, 2017). Also, it is involved in breast cancer (Liang et al., 2010),

prostate cancer (Kristensen et al., 2016), esophageal cancer (Hong

et al., 2014), cutaneous T‐cell lymphoma (CTCL; Ralfkiaer et al.,

2011), gastric cancer (Y. Li, Gao, Xu, Ma, & Yang, 2015), pancreatic

ductal adenocarcinoma (Z. L. Zhang et al., 2015). Moreover, it

intervenes in hepatocellular carcinoma (S. Hu, Ran, Chen, Zhang, &

Xu, 2017), medulloblastoma (Ferretti et al., 2008), acute myeloid

leukemia (AML; Koutova et al., 2015), chronic myeloid leukemia

(CML; Babashah et al., 2013). Additionally, miRNA dysregulation also

is seen in endometrial cancer (Torres et al., 2012), ovarian cancer

(Nakamura et al., 2016), cholangiocarcinoma (Han et al., 2017; Jiao

F IGURE 1 The schematic picture describing the pathways in which oncogenes can progress, and TSG can reduce the potential of tumor
formation. A tumor suppressor miRNA would suppress an oncogene’s function, and conversely, an oncomiR miRNA would suppress a TSG
gene’s function. miRNA: microRNA; OncomiR: oncogenic miRNA; TSG: tumor suppressor gene [Color figure can be viewed at

wileyonlinelibrary.com]
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et al., 2017; Meng et al., 2006; H. Zhu et al., 2017), chronic

lymphocytic leukemia (Balatti, Pekarky, Rizzotto, & Croce, 2013;

Bruns et al., 2017; Mraz et al., 2009), hepatitis C virus (HCV; Y. Chen

et al., 2013; N. El‐Ekiaby et al., 2012; N. M. El‐Ekiaby et al., 2017; El

Sobky et al., 2016; Estrabaud et al., 2015; Khanizadeh et al., 2017;

Mahdy et al., 2016; Niu et al., 2016; Oksuz et al., 2015; Ono et al.,

2017; Van Renne et al., 2017; G. Xu et al., 2014), influenza virus

(Ingle et al., 2015; Y. Li et al., 2010, 2011; Rosenberger et al., 2017; X.

Zhang, Dong, et al., 2014; Table 1 and Figure 2).

miR‐326 acts as a tumor suppressor which regulates gastric

cancer cells growth, migration, and invasion (Y. Li et al., 2015). Also, it

may be efficient factors for preventing and reversing adriamycin

(ADM) resistance in cancer cells (J. Ma et al., 2015).

Obviously, miRNAs interact with long noncoding RNAs (lncRNAs) in

the pathogenesis of many cancers. For example, UCA1~miR‐143,
DLEU1~miR‐19a, PVT1~miR‐200, HOTAIR~miR‐7, LINC00478~let7c,
H19~miR‐675, HOTAIR~miR‐568, ROR~miR‐205, GAS5~miR‐21,
LOC554202~miR‐31 in breast cancer, BANCR~miR‐9, HOTAIR~miR‐
152, MEG3~miR‐148a, HOTAIR~miR‐331‐3p, TM4SF5~miR‐4697‐3p,
CTD‐2354A18.1~miR‐4697‐3p, TUSC7~miR‐23b, H19~miR‐141,
H19~miR‐675, ANRIL~miR‐99a, ANRIL~miR‐449a, GAPLINC~miR‐
211‐3p, NCR143/145~miR‐143/145, AC130710~miR‐139‐5p, linc‐
NR_024015~miR‐526b in gastric cancer and so on (Nair, 2016).

3.1 | Colorectal cancer (CRC)

A recent study on 114 CRC indicated that miR‐326 acts as a tumor

suppressor in cancer cells and inhibits cell proliferation, migration,

invasion, and induces cell apoptosis, carcinogenesis, and progression.

MiR‐326 suppresses cell cycle by targeting nin one binding protein

(NOB1). Also, its low expression is associated with metastasis and

recurrence risk of colorectal cancer and causes decreased survival rate in

CRCs. miR‐326 and NOB1 may act as a prognostic biomarker and

potential therapeutic targets for CRC (Wu et al., 2015). In contrast, G.

Chen et al. (2016) by analyzing the tissue samples from 14 people,

concluded that miR‐382, miR‐217, miR‐21, miR‐1184, miR‐326, and miR‐
330‐5p would contribute to the CRC development by affecting PITX2,

VSNL1, TCF4, MEF2C, and FOS. Bioinformatic analysis by Kou, Qiao, and

Wang (2015) revealed that miR‐326 can be utilized as a potential

theragnostic target for CRC. A study by Kjersem has confirmed that miR‐
326 associated with both shortened progression‐free survival (PFS) and

overall survival (OS) between the two responders (n=90) and

nonresponders (n=60) groups of metastatic colorectal cancer (mCRC)

patients (Kjersem et al., 2014). According to a study done by Ahmed et al.

(2009) on Stool and tissue samples of 15 patients and five controls, it is

revealed that the amount of miR‐326 is increased in stool specimen of

the patients and maybe acts as an informative screening test.

3.2 | Lung cancer

NSCLC is common and accounts for about 80% of lung cancer and

lung adenocarcinoma (LAC), is the primary kind of NSCLC. Wang

et al. studies on 46 nude mice of the BALB/c strain and frozen NCI‐

H460 cells, determined that the expression of miR‐10b, miR‐144,
miR‐9, miR‐31, miR‐34b miR‐25, miR‐92a, miR‐202, and miR‐326
varies from the metastatic NSCLC and nonmetastatic tissues, which

may provide a potential candidate for diagnosis, prognosis, and

treatment (R. Wang, Chen, et al., 2015). CCND1 oncogene has an

opposite correlation with miR‐326 in NSCLC patients and inhibits cell

proliferation, migration, invasion, and promotes apoptosis (C. Sun

et al., 2016). miR‐326 is able to mimic the inhibitory effects of NSBP1

inhibitor, which significantly suppresses NSCLC cell proliferation and

invasion (D. Li, Du, et al., 2016). Also,miR‐326 is correlated with

biochemical markers of bone turnover in bone metastasis of lung

cancer (Valencia et al., 2013). miR‐326 indicates tumor suppressive

activity and is decreased in lung cancer to control cell proliferation

and metastasis in lung cancer by targeting Phox2a which is

conducted by HOTAIR (R. Wang, Chen, et al., 2016). Also, according

to a study by J. Zhu et al. (2016) on 129 participants, it was noticed

that miR‑25, miR‑21, miR‑27b and miR‑326 can consider as the most

promising biomarker for LAC (J. Zhu et al., 2016). MiR‐326
upregulates epithelial‐to‐mesenchymal transition (EMT)‐induced
cells invasion in LAC by targeting of ADAM17 (Cai et al., 2015). It

is proposed that miR‐326–Gli2/Smo feedback loop regulates Sonic

hedgehog (Shh) activity and may be involved in lung development

and disease establishment (Jiang, Cushing, Ai, & Lu, 2014). HOTAIR/

miR‐326/SP1 pathway controls the chemoresistance of LAC cells (J.

Li, Li, et al., 2016). X. Xu et al., (2017) studied the Human lung cancer

cell lines and concluded that miR‐30a‐5p and BCL‐2 would change

the cancer therapy resistance.

3.3 | Brain cancer

Brain cancer is one of the most dreadful known cancers due to its low

survival rate, high rate of resistance to therapy, relapse, and terrible

neurological degeneration. Malignant and nonmalignant brain tumors

are the most common type of tumors under the age of 20 (Sonali

et al., 2018). Ferretti et al. (2008) by examining human and animal

tissue samples and evaluation of D283 MB cell lines have shown that

miRNA‐mediated control of the Hedgehog (Hh) signaling pathway is

involved in malignancy establishment and miR‐324‐5p, miR‐125b and

miR‐326 besides Smoothened (Smo) and Gli factors (Gli1), inhibit cell

growth and indicate tumor suppressive effect.

3.4 | Glioma

Glioblastoma (GB) is an aggressive astrocytoma. MiR‐326 is reported

to be decreased in GB compared with normal brain tissue, it has been

confirmed to control the development of cerebellar neural progenitor

and cancer cells initiation and progression. Recently, it was reported

that miR‐326 has a low level of expression in glioblastoma tissues

and possibly regulates the metabolic activity of glioma and glioma

stem cells, suggesting the participation of miR‐326 in tumorigenesis

and progression of glioma (S. Wang, Lu, et al., 2013). downregulation

of miR‐326 may be considered as the potential marker for predicting

clinical outcome for advanced glioma patients, offering miR‐326 as a

4 | JADIDESLAM ET AL.



TABLE 1 MiRNAs associated with common human diseases

Malignancy miRNA involved References

Colorectal cancer miR‐1, miR‐9, miR‐10a, miR‐17, miR‐17‐3p, miR‐17‐
5p, miR‐19, miR‐21, miR‐23a, miR‐25, miR‐26, miR‐
26a, miR‐28‐5p/‐3p, miR‐29‐b2, miR‐30a‐3p, miR‐
30a‐5p, miR‐30c, miR‐31, miR‐32, miR‐34s, miR‐96,
miR‐99, miR‐106m, miR‐124b, miR‐125a, miR‐125b,
miR‐126, miR‐128b, miR‐133b, miR‐135b, miR‐137,
miR‐135b, miR‐139‐5p, miR‐143, miR‐145, miR‐150,
miR‐183, miR‐200a, miR‐200b, miR‐200c, miR‐205,
miR‐214, miR‐217, miR‐223, miR‐224, miR‐326,
miR‐330‐5p, miR‐382, miR‐494, miR‐552, miR‐592,
miR‐1184, let‐7a‐1, let‐7b, let‐7g

Almeida et al. (2012); G. Chen et al. (2016); Y. Ma,

Zhang, et al. (2012); Oberg et al. (2011); Paranjape

et al. (2009); Pichler et al. (2014); Ruan et al. (2009);

Sanchez‐Mejias and Tay (2015); H. B. Sun et al. (2014);

Wu et al. (2015); Zhou et al. (2013)

Non‐small cell lung cancer miR‐9, miR‐10b, miR‐16, miR‐17, miR‐21, miR‐25,
miR‐31, miR‐34b, miR‐92a, miR‐101‐3p, miR‐126,
miR‐140‐5p, miR‐144, 146a‐5p, miR‐146b‐5p, miR‐
150‐5p, miR‐202, miR‐205, miR‐326, miR‐376a, miR‐
451, miR‐486, miR‐661, miR‐675

Balca‐Silva et al. (2012); Cao et al. (2017); Feng, Yang,

Hu, Wang, and Liu (2017); Flamini, Jiang, and Cui

(2017); F. Gao et al. (2015); Goto et al. (2017); Huang,

Sun, Wang, He, and Li (2015); D. Li, Du, Liu, and Li

(2016); Y. Li, Zhang, Li, et al. (2017); F. Liu, Cai, et al.

(2017); W. Lu, Zhang, et al. (2017); Sromek et al.

(2017); R. Wang, Chen, et al. (2015); Y. Wang, Cong,

et al. (2017); Xiang, Hang, Che, and Li (2015); Yuwen,

Sheng, Liu, Wenyu, and Shu (2017); X. Zhang, He, et al.

(2017); J. Zhao et al. (2015); Z. Zhao, Lv, Zhang, Zhao,

and Lv (2017); W. Zheng, Zhou, et al. (2017)

Lung cancer miR‐17–92, miR‐21, miR‐25, miR‐30, miR‐31, miR‐34,
miR‐34b, miR‐126, miR‐129, miR‐138, miR‐155,
miR‐181a, miR‐189, miR‐200b, miR‐210, miR‐218,
miR‐224, miR‐326, miR‐381, miR‐545, miR‐1180,
let‐7a

Cai et al. (2015); E. G. Chen, Zhang, Xu, Zhu, and Hu

(2017); P. Chen, Zhao, and Li (2017); Du et al. (2014);

He et al. (2017); W. W. Hu, Chen, et al. (2017); S. Li,

Yang, Xia, Fan, and Yang (2017); X. X. Li, Liu, Meng, and

Wang (2017); Y. Li, Zhang, et al. (2017); Naidu and

Garofalo (2015); Ruan et al. (2009); L. Wang, Liu,

Zhang, and Huang (2017); Yanaihara et al. (2006); You

and Park (2017)

Brain cancer miR‐21, miR‐221, miR‐326 Khan et al. (2017); Ruan et al. (2009)

Glioma miR‐7, miR‐9, miR‐10a, miR‐10b, miR‐15a, miR‐15b,
miR‐16, miR‐19a, miR‐20, miR‐21, miR‐23, miR‐23a,
miR‐23b, miR‐24, miR‐25, miR‐28, miR‐31, miR‐32,
miR‐33a, miR‐34a, miR‐34c, miR‐92, miR‐101, miR‐
106a, miR‐124, miR‐125a miR‐125b, miR‐128, miR‐
129, miR‐130a, miR‐130b, miR‐136, miR‐137, miR‐
142, miR‐143, miR‐145, miR‐148, miR‐152, miR‐
152‐3p, miR‐155, miR‐181a‐c, miR‐195, miR‐196a,
miR‐196b,miR‐200a*, miR‐204, miR‐210, miR‐216b,
miR‐221, miR‐222, miR‐253‐5p, miR‐326, miR‐329,
miR‐330, miR‐410, miR‐451, miR‐452, miR‐483‐
5p,miR‐483‐5p, miR‐489, miR‐491‐5p, miR‐495,
miR‐520b miR‐527, miR‐584, miR‐592, miR‐617,
miR‐633, miR‐634, miR‐769‐3p miR‐884‐5p

M. Chang, Qiao, et al. (2017); Cui et al. (2017); Guan

et al. (2010); Khan et al. (2017); B. Li, Liu, Sun, et al.

(2017); Y. Li, Ma, Wang, and Li (2017); Peng et al.

(2017); Qin, Rong, Dong, Yu, and Yang (2017); Y. Wang

and Wang (2017); T. Zhang, Ma, Zhang, Huo, and Zhao

(2017); X. Zhao, Liu, et al. (2017)

Breast cancer miR‐7, miR‐10b, miR‐17–92 cluster, miR‐19b, miR‐21,
miR‐22, miR‐242, miR‐27, miR‐27b, miR‐29b‐2, miR‐
30a, miR‐30c, miR‐31, miR‐34a, miR‐93, miR‐101,
miR‐106a, miR‐106b‐25 cluster, miR‐125a, miR‐
125b, miR‐126, miR‐128a, miR‐135a, miR‐144, miR‐
145, miR‐146a/b, miR‐150, miR‐155, miR‐181, miR‐
182, miR‐183, miR‐191, miR‐199a, miR‐200, miR‐
203, miR‐205, miR‐206, miR‐210, miR‐216, miR‐221,
miR‐222cluster, miR‐326, miR‐328, miR‐330, miR‐
335, miR‐342, miR‐373, miR‐375, miR‐451, miR‐491,
miR‐512‐3p, miR‐520c, miR‐608, miR‐671, miR‐767‐
3p, miR‐769‐3p, let‐7

Chu et al. (2017); Heidary et al. (2015); Kovalchuk et al.

(2008); Liang et al. (2010); Pan, Morris, and Yu (2009);

Ruan et al. (2009); Sanchez‐Mejias and Tay (2015);

Sharma, Rajendran, Kulshreshtha, and Ghosh (2017);

Tang, Ahmad, and Sarkar (2012); H. D. Zhang, Jiang,

Sun, Li, and Tang (2017); K. Zhang, Zhang, Liu, Xiong,

and Zhang (2014); L. Zhao, Zhao, He, and Mao (2017);

H. Zhu et al. (2008)

(Continues)
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possible candidate tumor suppresive biomarker (S. Wang, Lu, et al.,

2013). Kefas et al. discovered miR‐326 targets Notch1/2 and

pyruvate kinase M2 to decrease proliferation and invasion rate in

different in vitro studies. Furthermore, it is suggested that miR‐326
and Notch1 are controlling each other mutually by negative

feedback. They also confirmed that overexpression of miR‐326
induces apoptosis and suppresses proliferation, viability, invasiveness

and in vivo tumor volume decrease, and it may be a capable target for

GB therapy (Kefas et al., 2010). A recent study has shown the

potential application of miRNAs profile and their interactions in the

development and improvement of prognostic tools and treatments of

GB (Qiu et al., 2013). SOS1, NRAS, VDR, SMAD3, SGMS1, and

HPGDS are considered targets of miR‐326 for regulating of cancer

promotion (X. Liu, Song, Li, Wang, & Yang, 2017). Furthermore, high

TABLE 1 (Continued)

Malignancy miRNA involved References

Ovarian cancer miR‐17, miR‐17–92 cluster, miR‐19a‐3p, miR‐20a,
miR‐21, miR‐23b, miR‐25, miR‐25‐3p, miR‐26a, miR‐
29a, miR‐30a‐5p, miR‐92, miR‐92a, miR‐93, miR‐
106b, miR‐122, miR‐126, miR‐132, miR‐141, miR‐
145, miR‐150, miR‐150‐5p, miR‐152,miR‐200a, miR‐
200b, miR‐200c, miR‐203, miR‐205,miR‐214, miR‐
221, miR‐429, miR‐645, let‐7‐b, let‐7f, let‐7i‐5p

Nakamura et al. (2016)

Prostate cancer miR‐17, miR‐19, miR‐20a, miR‐26, miR‐101, miR‐107,
miR‐125b, miR‐185‐5p, miR‐195, miR‐203, miR‐214,
miR‐221‐3p, miR‐222, miR‐326, let‐7, let‐7d

Bryant et al. (2012); Kristensen et al. (2016); Ruan et al.

(2009); Sanchez‐Mejias and Tay (2015)

Esophageal cancer miR‐30b, miR‐92b, miR‐126, miR‐218, miR‐302b,
miR‐326, miR‐338, miR‐655

P. Chang, Wang, Zhou, and Hou (2017); Hong et al.

(2014); Jingjing, Wangyue, Qiaoqiao, and Jietong

(2016); Kong et al. (2016); Q. Li, Zhang, Li, Liu, and

Chen (2017); G. Ma, Jing, et al. (2017); Yan et al.

(2017); M. Zhang, Zhang, et al. (2017)

CTCL miR‐155, miR‐203, miR‐205, miR‐326, miR‐663b,
miR‐711

Ralfkiaer et al. (2011)

Endometrial cancer miR‐99a, miR‐100, miR‐145, miR‐199b‐5p, miR‐326, Sanchez‐Mejias and Tay (2015); Torres et al. (2012)

Gastric cancer miR‐17, miR‐18a, miR‐19a, miR‐25, miR‐30a, miR‐31,
miR‐106a‐5p, miR‐133b, miR‐139‐5p, miR‐181a‐5p,
miR‐183, miR‐195, miR‐214, miR‐326, miR‐331‐3p,
miR‐340, miR‐378, miR‐638

Ji et al. (2017); Y. Li et al. (2015); X. Liu, Song, et al.

(2017); Z. Liu, Sun, et al. (2017); Paranjape et al.

(2009); Sanchez‐Mejias and Tay (2015); L. Y. Zhao,

Tong, et al. (2017)

Pancreatic ductal

adenocarcinoma

miR‐15b, miR‐25, miR‐29b‐2, miR‐29c, miR‐30c, miR‐
32, miR‐95, miR‐96, miR‐100, miR‐125b‐1, miR‐
128b, miR‐130b, miR‐139, miR‐141, miR‐142‐p,
miR‐146a, miR‐148a, miR‐148b, miR‐155, miR‐181a,
miR‐181c, miR‐186, miR‐196a, miR‐200b, miR‐214,
miR‐216, miR‐217miR‐222, miR‐326, miR‐345, miR‐
375, miR‐376a

Paranjape et al. (2009); Z. L. Zhang et al. (2015)

Hepatocellular carcinoma miR‐18, miR‐21, miR‐34s, miR‐122, miR‐133a, miR‐
144, miR‐199a, miR‐224, miR‐326, miR‐372, miR‐
431

S. Hu, Ran, et al. (2017); Ruan et al. (2009); Sanchez‐
Mejias and Tay (2015)

Medulloblastoma miR‐30a, miR‐125b, miR‐323, miR‐324‐5p, miR‐326,
miR‐367

Ferretti et al. (2008); Kaid et al. (2015); Singh et al.

(2017); H. Zhang, Wang, and Chen (2017)

Cholangiocarcinoma miR‐16, miR‐21, miR‐106b, miR‐141, miR‐200b, miR‐
320

Han et al. (2017); Jiao et al. (2017); Meng et al. (2006);

H. Zhu et al. (2017)

AML miR‐199b‐5p, miR‐301b, miR‐326, miR‐361‐5p, miR‐
625, miR‐655

Koutova et al. (2015)

CML miR‐21, miR‐124‐3p, miR‐326, miR‐424 Babashah et al. (2013); Hershkovitz‐Rokah et al. (2015);

Y. X. Liu, Wang, et al. (2016); W. Z. Wang, Pu, et al.

(2015)

CLL miR‐15/16, miR‐17‐5p, miR‐29, miR‐29c, miR‐34a,
miR‐155, miR‐181

Balatti et al. (2013); Bruns et al. (2017); Mraz et al.

(2009)

Melanoma miR‐25, miR‐92a, miR‐181, miR‐200b Sanchez‐Mejias and Tay (2015)

Lymphoma miR‐30a, miR‐182, miR‐876 Sanchez‐Mejias and Tay (2015)

Abbreviations: AML: acute myeloid leukemia; CLL: chronic lymphocytic leukemia; CML: chronic myeloid leukemia; CTCL: cutaneous T‐cell lymphoma;

miR: microRNA.
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mobility group AT‐hook 1 (HMGA1) and HMGA2 genes are

suggested as possible targets of miR‐326 by bioinformatics

approaches (D'angelo et al., 2012). Moreover, HOTAIR is the target

of miR‐326 which is a tumor suppressor, in HOTAIR knockdown

glioma cell lines its overexpression decreases the fibroblast growth

factor 1 (FGF1) expression which is an oncogene to stimulate PI3K/

AKT and MEK 1/2 pathways. These results provided a comprehen-

sive analysis of HOTAIR‐miR‐326‐FGF1 axis and propose a new

therapeutic strategy for the treatment of glioma (Ke et al., 2015).

3.5 | Breast cancer

Breast cancer is the most common cancer in women and is the

second most common cancer in the entire population (Zare,

Bastami, Solali, & Alivand, 2018). MiR‐326 directly modulates B7‐
H3 by attaching to 3′‐UTR region (Nygren et al., 2014). It is

negatively correlated with multidrug resistance‐associated pro-

tein‐1 (MRP‐1) expression in breast cancer cells and tissues

(Liang et al., 2010).

3.6 | Prostate cancer

Prostate cancer (PC) is the most common men malegnancy and is the

second leading cause of death worldwide (Jemal, Siegel, Xu, & Ward,

2010). Bryant et al. in a study on 78 patients with PC and 28 healthy

control indicated that miR‐107 and miR‐326 concentration may

represent a novel method for evaluating of PC (Bryant et al., 2012).

Kristensen et al. (2016) indicated a specific miRNA signature (miR‐185‐

F IGURE 2 A list of cancers involved with miR‐326 with their possible targets. ADAM17: ADAM Metallopeptidase Domain 17; AML: acute
myeloid leukemia; B7‐H3: CD276 (an important immune checkpoint member of the B7 and CD28 families); BCL2: BCL2, apoptosis Regulator;
CCND1: cyclin D1; CML: chronic myeloid leukemia; CRC: colorectal cancer; CTCL: cutaneous T‐cell lymphoma; CTTN: cortactin; EC:
endometrial cancer; FSCN1: fascin actin‐bundling protein 1; HC: hepatocellular carcinoma; Hh pathway: hedgehog signaling pathway; Hh/Gli:

hedgehog‐Gli pathway; LASP1: LIM And SH3 Protein 1; MB: medulloblastoma; miR: microRNA; MMP24: matrix metallopeptidase 24; MRP‐1:
multidrug resistance‐associated protein 1; NOB1: Nin one binding protein 1; NOCTH1,2: notch signaling pathway1,2; PKM2, pyruvate Kinase
M2; SHH‐MB: sonic hedgehog medulloblastoma; SMO: smoothened, frizzled class receptor; SPOCK1: SPARC (Osteonectin), Cwcv And Kazal

Like Domains Proteoglycan 1; TCF4: transcription factor 4; VDR: vitamin D receptor; VEGFC: vascular endothelial growth factor C [Color figure
can be viewed at wileyonlinelibrary.com]
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5p, miR‐221‐3p, miR‐326) with significant independent prognostic value

in PC patients.

3.7 | Esophageal cancer

Esophageal cancer is the seventh most common cancer worldwide,

and the most common form of this cancer type is esophageal

squamous cell carcinoma (ESCC; X. C. Wang, et al., 2012). Hong et al.

(2014) have shown that miR‐326 is associated with poor prognosis in

esophageal cancer and it can be used as a biomarker for diagnosing

and therapy. The effect of miR‐326 is by corticin (CTTN), a regulator

of the cortical actin cytoskeleton, and VEGF‐C.

3.8 | Cutaneous T‐cell lymphoma

The most common primary skin lymphomas are CTCL. According to

recent studies by Ralfkiaer et al. (2011) on 200 subjects of CTCL, it is

showed that miRNAs have a high diagnostic potential, for instance,

miR‐326, miR‐663b, miR‐711, miR‐203, miR‐205, and miR‐155. They
presented that a single miRNA panel could perform differential

diagnosis between diseases such as benign inflammatory skin

disorders and CTCL with very high accuracy.

3.9 | Endometrial cancer (EC)

EC is one of the most common malignancies in females, which

indicating an increase in incidence. Liu et al. studied 56 EC patients

and found that the expression of this miRNA is reduced in the EC cell

lines and tissues, and its expression induces inhibition of proliferation

and metastasis. They found that tumorigenesis of EC could induce a

reduction in miR‐326 expression and confirmed that miR‐326 as a

tumor suppressor that may be applicable as a target for diagnosis or

therapy approaches (W. Liu, Zhang, Xu, Wang, & Liu, 2017).

3.10 | Gastric cancer

Gastric cancer is the second cause of mortality worldwide due to

cancer (Kahroba, Hejazi, & Samadi, 2019). Recent studies have shown

that miR‐326 operated as a tumor suppressor in gastric cancer by

directly regulating FSCN1 (Y. Li et al., 2015) and NOB1 (Ji, Zhang,

Kong, Ma, & Hua, 2017). The results of a meta‐analysis that studied

the effects of miRNAs in gastrointestinal cancers (GIC) showed that

23 miRNAs significantly are upregulated and 36 miRNAs are

significantly downregulated which are correlated with poor prognosis

in GIC patients. They found that miR‐326 and other miRNAs are

possible diagnostic biomarkers for gastric cancer (Q. Zheng, Chen,

Guan, Kang, & Yu, 2017).

3.11 | Pancreatic ductal adenocarcinoma (PDAC)

In PDAC patients, downregulation of miR‐326 is highly asso-

ciated with venous invasion, but upregulation of miR‐326 is

associated with a good prognosis for the patients. Therefore,

miR‐326 plays a protective role during PDAC carcinogenesis and

progression. The high expression of miR‐326 probably increases

the survival rate by reducing the invasiveness of PDAC (Z. L.

Zhang et al., 2015).

3.12 | Hepatocellular carcinoma (HCC)

HCC, the most common form of liver malignancy, is the fifth common

cancer and is the third leading cause of cancer death. Recent studies

indicated that miR‐326 inhibits the progression of HCC by direct

modulation of LIM and SH3 protein 1 (LASP1), which are targets of

miR‐326. Regarding the overexpression of miR‐326 in HCC, it is

consumed as a potential therapeutic target (S. Hu, Ran, et al., 2017).

In addition, in a study by Leo et al., on 377 samples, it has been shown

that miR‐326 overexpression is correlated with a survival rate in

HCC patients and can also be applied as a diagnostic biomarker of

HCC (M. Lu, Kong, et al., 2017).

3.13 | Medulloblastoma

Medulloblastoma is known as the most common childhood primary

brain malignancy. Recent studies showed that miR‐326 is involved in

the regulation of SHHMB cancer stem cells, and they confirmed that

downregulation of the miR‐326 triggers and maintains the Hh/Gli

signaling activation and self‐renewal in SHH‐MBs (Miele et al., 2017).

Also, targeting of Smo by miR‐326 inhibits its function (Ferretti et al.,

2008).

3.14 | Acute myeloid leukemia

AML is the most common hematologic malignancy in adults.

According to studies in miRNAs filed on AML patients, it is showed

that the rate of miR‐326 in postchemotherapy patients is signifi-

cantly reduced and for this reason, it is a follow‐up candidate in the

treatment of the AML (Baghbani et al., 2018; Koutova et al., 2015;

Yazdani et al., 2019).

3.15 | Chronic myeloid leukemia

CML is a myeloproliferative disorder that begins primarily from a

single transformed hematopoietic stem cell (HSC) or multipotent

progenitor cell. Recently, according to a study conducted on the

human myeloid cell lines (K‐562 and HL60) and primary CD341

leukemic cells of patients, it has been shown that miR‐326 activates

Smo signal transducer of the oncogenic Hh pathway that induces

relapse in CML (Babashah et al., 2013). In another study, the effects

of some compounds on Smo pathway inhibition and their potential

function to reduce cell proliferation and induce apoptosis/autophagy

in both the tested cell lines (K‐562 and in KU‐812) are performed. It

is found that these compounds were able to regulate some miRNAs,

such as miR‐324‐5p, miR‐155, and miR‐326, and we may be able to

use them as a good therapeutic target for CML (Chiarenza et al.,

2016; Edalati Fathabad et al., 2017).
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4 | MIRNAS IN STRATEGIES OF
DIAGNOSIS

The several aspects of miRNAs which are capable for diagnosis of

cancers include: using a signature of modified miRNA expression

to distinguish cancer tissue from normal tissue, use of miRNA

based classifier to recognize tissue of origin for cancers of

unknown primaries, profiling circulating blood, or tumor deriver

exosomal miRNAs, surpassing the invasive procedures to aid in

early detection of cancers, distinguishing tumor subtypes using a

panel of miRNAs that show differential expression within one

cancer type and study SNPs in the miRNA genes, miRNA binding

sites in the target mRNA genes or in the miRNA processing/

machinery pathway genes to predict cancer predisposition

(Paranjape et al., 2009).

5 | MIRNAS THERAPEUTICS STRATEGIES

MiRNAs are novel targets for cancer diagnosis and therapy

(Paranjape et al., 2009). Currently, numerous RNAi‐based strategies

are defined for cancer therapy, for instance, sandwich RNAi

inhibition strategy, multiplex RNAi inhibition strategy, miRNA

inhibition therapy, miRNA mimetic agents, SMIRs‐small molecules

inhibitors of miRNAs and targeting miRNAs From microvesicles and

exosomes (Aslan et al., 2019).

Novel strategies for inhibitory‐miRNA treatments based on

miRNA sponges, LNA‐antimiR constructs, antisense antimiRs

(LNA), and antagomiRs and effectiveness of someone confirmed

in vivo and in vitro. Some studies have suggested mir‐326 is

capable to be used for the treatment of cervical cancer (Cheng,

Jiang, Yuan, Liu, & Simoncini, 2018), diagnosis and detection of

prognosis of pediatric ALL (Ghodousi & Rahgozar, 2018),

diagnosis and treatment of osteosarcoma (J. Wang, Cao, Wu, &

Wang, 2018). Now, many clinical trials have begun on the use of

miRNAs in the treatment of diseases, especially, in the treatment

of fibrosis, HCV infection, atherosclerosis, and cancer. However,

more work must perform on miRNA delivery systems, an

improvement in the stability of miRNAs, and a detailed knowl-

edge of the off‐target results of miRNA therapies (Eyvazi et al.,

2019; Shah et al., 2016; Figure 3).

6 | CONCLUSION AND PERSPECTIVES

In brief, much evidence proposes that miR‐326 acts as a critical

regulator of different cancers, mainly through its targeting of

related genes and collaboration with various signaling pathways. It

can act as a tumor promoter or suppressor and is involved in many

processes of cancer cells, including cell proliferation, apoptosis,

differentiation, metastasis, and invasion. More studies with larger

sample sizes are needed to clarify its questionable role in cancers.

With regard to the miR‐326 role in carcinogenesis, it could also

applicate as a hopeful biomarker for diagnosis and differential

diagnosis, prognosis evaluation and tumor staging. MiR‐326 can be

ideal for clinical use because it has stability characteristic. Most

importantly, our recent knowledge of miR‐326 can lead to the

development of new therapies for cancer. In the near future, we

have to recognize major miR‐326 targets and by therapeutically

modulate levels of this miRNA develop safe, accurate and specific

methods, and it can be miR‐326 one of the most important

therapeutic targets for cancer therapy.

F IGURE 3 Schematic picture of miRNA biogenesis, methods of their secretion, miRNA extraction, and quantitative tools. In the future, a

clinical decision‐making strategy can be created for the targeted and personalized treatment of the disease. CSF: Cerbrospinal fluid; HDL: High
density lipoprotein; miRNA: microRNA; qRT‐PCR: quantitative reverse‐transcription polymerase chain reaction [Color figure can be viewed at
wileyonlinelibrary.com]
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